Pages

Wednesday, October 22, 2014

Pegaptanib (anti-VEGF aptamer) 治療黃斑部病變 FDA 臨床

內建免疫療法正夯 適體分子抗癌 李昀澔 2014/09/24 19:03 點閱 677  中研院舉行癌症研究技轉發表會,介紹多項國內的抗癌新療法。(photo by李昀澔/台灣醒報) 中研院舉行癌症研究技轉發表會,介紹多項國內的抗癌新療法。(photo by李昀澔/台灣醒報) 【台灣醒報記者李昀澔台北報導】能同時對抗多種癌症的藥物,是目前癌症研究的「顯學」。中研院24日舉辦研究發表會,包括中研院研究員吳漢忠、副研究員李文山、特聘研究員梁啟銘,都提出藉由抑制癌細胞轉移以治療腫瘤的新方法。台大校長楊泮池團隊則發表以「適體分子(aptamer)」促進人體「內建」免疫系統抗癌的「免疫療法」相關研究,引起多家生技廠商關注。首屆「唐獎」生技醫藥獎得主、美國德州大學免疫系主任詹姆斯艾利森及日本京都大學免疫基因學客座教授本庶佑,分別發現「細胞毒性T淋巴細胞抗原4」(CTLA-4)及「計畫性死亡蛋白-1」(PD-1),開啟近年來癌症免疫療法相關研究及新藥研發。【藥界新星適體分子】中研院生醫所博士張翼中指出,目前市面上多種癌症免疫療法抗體雖然有效,但以CTLA-4抗體為例,整套療程要價12萬美元,且易產生免疫系統過度反應的副作用,學界遂著手研發可取代抗體功能、由去氧核醣核酸(DNA)組成的「適體分子」藥物。張翼中等人透過動物實驗發現,多種適體分子可在不破壞正常細胞的情況下殺死癌細胞,有助減少手術後腫瘤復發。「適體分子的體積比抗體小很多,更容易穿透細胞,且在不同溫度及酸鹼度的環境下,較能保持結構穩定。」張翼中分析,目前全球僅有1款治療「黃斑部病變」的適體分子臨床藥物,適體分子抗癌藥物都還在人體試驗階段,由於國內多家提供「基因定序」服務的廠商,都有能力量產適體分子,因此該類藥物極具市場競爭力。【破壞癌細胞轉移】中研院細胞與個體生物所研究員吳漢忠則開發出能造成癌細胞死亡的抗「EpCAM」抗體;吳漢忠解釋,由於只有胚胎幹細胞及腫瘤細胞上會有大量的EpCAM,因此EpCAM抗體不致傷害正常細胞,副作用較傳統抗癌藥物輕微,可抑制大腸直腸癌、口腔癌、胰臟癌等腫瘤細胞轉移。過去研究顯示,「唾液酸轉移酵素」會促進癌細胞轉移;中研院化學所副研究員李文山團隊研發可抑制唾液酸轉移酵素的「石膽酸」衍生物,並減少會造成腫瘤生長的血管增生現象。基因體中心特聘研究員梁啟銘團隊則發現,若將人類血清中原本呈球狀的「白蛋白」轉變為纖維狀,可破壞癌細胞轉移的功能。

Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease  Eugene W. M. Ng1, David T. Shima1, Perry Calias1, Emmett T. Cunningham, Jr.1, David R. Guyer1  About the authors & Anthony P. Adamis1 Nature Reviews Drug Discovery 5, 123-132 (February 2006) Aptamers are RNA or DNA oligonucleotides that are selected through systematic evolution to bind to proteins with both affinity and specificity. Aptamers offer the specificity and affinity advantages of antibodies in a relatively small, chemically synthesized molecule free from cell-culture-derived contaminants. They are also essentially non-immunogenic. In contrast to other oligonucleotide agents, such as antisense oligonucleotides, aptamers can act on extracellular targets. Vascular endothelial growth factor (VEGF) was selected as a target for aptamer development owing to its key role in pathological angiogenesis, for example, in ocular neovascular diseases such as age-related macular degeneration (AMD) and diabetic macular oedema. After the selection of anti-VEGF aptamers that blocked the actions of VEGF in vitro, further optimization of the pharmacokinetic properties, for example by using 2'-F substitutions, resulted in the pegylated aptamer pegaptanib, which was chosen for clinical development. Pegaptanib, administered by intravitreous injection, was tested in clinical trials in patients with neovascular AMD, and on the basis of its ability to reduce vision loss, was approved by the US FDA in December 2004.

 

No comments:

Post a Comment