Sunday, February 12, 2012

用DNA取代CPU的生物電腦

Biological Computer Performs Decryption of Images by Gene Ostrovsky on Feb 10, 2012  A team of researchers from The Scripps Research Institute in California and the Technion–Israel Institute of Technology have created a purely biological computer that can decrypt images stored on DNA chips. The actual computer is a transparent liquid full of small bits of DNA, DNA enzymes and ATP (Adenosine triphosphate) to power the device.

More details from a Scripps announcement: In explaining the work's union of the often-disparate fields of biology and computer science, Keinan [Professor Ehud Keinan of Scripps Research and the Technion] notes that a computer is, by definition, a machine made of four components—hardware, software, input, and output. Traditional computers have always been electronic, machines in which both input and output are electronic signals. The hardware is a complex composition of metallic and plastic components, wires, and transistors, and the software is a sequence of instructions given to the machine in the form of electronic signals. "In contrast to electronic computers, there are computing machines in which all four components are nothing but molecules," Keinan said. "For example, all biological systems and even entire living organisms are such computers. Every one of us is a biomolecular computer, a machine in which all four components are molecules that 'talk' to one another logically." The hardware and software in these devices, Keinan notes, are complex biological molecules that activate one another to carry out some predetermined chemical work. The input is a molecule that undergoes specific, predetermined changes, following a specific set of rules (software), and the output of this chemical computation process is another well-defined molecule."The ever-increasing interest in biomolecular computing devices has not arisen from the hope that such machines could ever compete with electronic computers, which offer greater speed, fidelity, and power in traditional computing tasks," Keinan said. "The main advantages of biomolecular computing devices over electronic computers have to do with other properties."As shown in this work, he continues, a wealth of information can be stored and encrypted in DNA molecules. Although each computing step is slower than the flow of electrons in an electronic computer, the fact that trillions of such chemical steps are done in parallel makes the entire computing process fast. "Considering the fact that current microarray technology allows for printing millions of pixels on a single chip, the numbers of possible images that can be encrypted on such chips is astronomically large," he said. "Also, as shown in our previous work and other projects carried out in our lab, these devices can interact directly with biological systems and even with living organisms," Keinan explained. "No interface is required since all components of molecular computers, including hardware, software, input, and output, are molecules that interact in solution along a cascade of programmable chemical events." He adds that because of DNA's ability to store information, major computer companies have been extremely interested in the development of DNA-based computing systems.

No comments:

Post a Comment

alveice Team. Powered by Blogger.