感冒藥能治癌?中正大學與嘉基新研究登上國際期刊 2017-11-22〔記者曾迺強/嘉義報導〕
Epigenetic silencing of the dual-role signal mediator, ANGPTL4 in tumor tissues and its overexpression in the urothelial carcinoma microenvironment Oncogene, 16 October 2017/ Urothelial carcinoma (UC) carcinogenesis has been hypothesized to occur through epigenetic repression of tumor-suppressor genes (TSGs). By quantitative real-time polymerase chain reaction array, we found that one potential TSG, angiopoietin-like 4 (ANGPTL4), was expressed at very low levels in all bladder cancer cell lines we examined. Previous studies had demonstrated that ANGPTL4 is highly expressed in some cancers, but downregulated, by DNA methylation, in others. Consequently, owing to these seemingly conflicting functions in distinct cancers, the precise role of ANGPTL4 in the etiology of UC remains unclear. In this study, using methylation-specific PCR and bisulfite pyrosequencing, we show that ANGPTL4 is transcriptionally repressed by DNA methylation in UC cell lines and primary tumor samples, as compared with adjacent noncancerous bladder epithelium. Functional studies further demonstrated that ectopic expression of ANGPTL4 potently suppressed UC cell proliferation, monolayer colony formation in vitro, and invasion, migration, and xenograft formation in vivo. Surprisingly, circulating ANGPTL4 was significantly higher in plasma samples from UC patients than normal control, suggesting it might be secreted from other cell types. Interestingly, our data also indicated that exogenous cANGPTL4 could promote cell proliferation and cell migration via activation of signaling through the Erk/focal adhesion kinase axis. We further confirmed that mouse xenograft tumor growth could be promoted by administration of exogenous cANGPTL4. Finally, immunohistochemistry demonstrated that ANGPTL4 was downregulated in tumor cells but overexpressed in tumor adjacent stromal tissues of muscle-invasive UC tissue samples. In conclusion, our data support dual roles for ANGPTL4 in UC progression, either as a tumor suppressor or oncogene, in response to microenvironmental context.
Cyproheptadine exhibits antitumor activity in urothelial carcinoma cells by targeting GSK3β to suppress mTOR and β-catenin signaling pathways. Cancer Lett. 2016 Jan 1;370(1):56-65. Cyproheptadine, a serotonin antagonist, has recently been reported to function as a novel therapeutic agent by inhibiting PI3K/AKT signaling in several human cancers. However, the therapeutic effect of cyproheptadine in urothelial carcinoma (UC) has never been explored. In this study, we determined the effect of cyproheptadine on the growth of five human UC cell lines and an in vivo xenograft model. The results showed that cyproheptadine exerted an inhibitory effect on the proliferation of UC cells both in vitro and in vivo. Cyproheptadine also induced cell cycle arrest in the G1 phase, subsequently followed by apoptosis and necrosis. The underlying mechanisms of cell cycle arrest were associated with the reduction of c-Myc, induction of p21 and p27, and the stabilization of Rb expression. In addition, the suppression of the GSK3β/TSC2/mTOR pathway and deregulation of the GSK3β/β-catenin signaling were observed in cyproheptadine-treated UC cells. Furthermore, cyproheptadine-induced apoptosis was associated with ANGPTL4 expression followed by activation of caspase3 and PARP in UC cells. Our experimental results provide evidence that cyproheptadine is a suitable therapeutic agent for the treatment of UC.
治療膀胱癌新發現 醫、校揭「抑制腫瘤」生長關鍵 2017年11月22日 13:29 中時 呂妍庭 中正大學生物醫學科學系與嘉義基督教醫院研究團隊歷經5年研究,
No comments:
Post a Comment